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Abstract—Intermittent computing applications in the IoT
space, such as long-term monitoring of the structural integrity of
infrastructures, rely on battery-less computing systems powered
through scavenged energy. For such systems, power-loss is a
fact of life, and there is a need for a secure power transition
mechanism to convert the active system state into a protected non-
volatile form and back. We evaluate the architectural needs to
secure these power transitions and to adapt computations based
on the scavenged energy. Our objective is to enforce confiden-
tiality, integrity, freshness, and authenticity over the system state
across power loss. We observe that secure power transitions are
delicate and complex. We need secure checkpoints which are ex-
pensive to compute, and which may require hardware-accelerated
cryptography and isolated secure non-volatile storage. Next, we
observe that in intermittent systems, the energy subsystem does
not adapt to the needs of the application. Rather, the application
must adjust its computing pattern to the available energy. We
define an energy-harvester subsystem interface to optimize the
run-time activity of the intermittent system. The interface drives
the optimized execution of a secure communication protocol
(covering key-exchange and bulk encryption), such that wasted
energy is eliminated and that run-time performance is improved.
We report results from several prototyping experiments.

I. INTERMITTENT ARCHITECTURES

Traditional architectures are conceived from the viewpoint

that power is plentiful and that power will only be fully re-

moved when all tasks are completed. The power management

is adjusted to the needs of the application or to the computing

load. Yet in systems where the power source is unreliable

and limited, the architecture adapts to the available power,

including seamless and transparent turn-off and turn-on. Such

architectures are intermittent - they can pause computation to

save and later restore system state. Intermittent architectures

use scavenged or harvested energy sources, which provide a

nearly inexhaustible energy supply with limited and unreliable

power delivery (think of a solar cell). Depending on the

energy scavenging source, the power level can be as low

as a few microwatt. Through power conditioning, scavenged

energy is stored in an energy buffer, CB , which in turn

has limited capacity and which may overflow. This makes

continuous operation of an architecture virtually impossible;

at some point, the energy buffer runs out. However, by saving

critical system state as a checkpoint, system operation can

continue across power loss. The checkpoint generation is

either triggered by a system call in volatile processors or

automatically triggered by a power interrupt in non-volatile

processors [1]. Non-volatile processors store a majority of their

data in non-volatile memory and place their system data, such

Fig. 1. Secure intermittent architecture with the expected hardware support
for energy interface, secure non-volatile memory, NVM, and cryptographic
hardware. CB : Energy buffer; VCC : Power supply; B0, B1: 2-bit interface
to indicate the energy level indicator in CB .

Fig. 2. DH key exchange between Alice and Bob. Alice requires 49.88mJ to
compute the shared secret, N1.N2.G. Pre-computing the random number, N1,
and the point multiplication N1.G reduces Bob’s online energy requirement
to 24.9mJ.

as registers, in volatile memory. They only have to back up

the volatile state in non-volatile logic, thus have the advantage

of instant state restore on power-up with negligible energy and

time overhead.

II. SECURITY AND ENERGY

Since checkpoints may contain critical settings such as

kernel privileges, memory access rights, and cryptographic

keys, they must provide the following security guarantees.

• Confidentiality, integrity, and authenticity, to protect

checkpoints against unauthorized reads and writes.

• Freshness, to protect checkpoints against replay.

• Atomicity, to ensure that the checkpointing itself is robust

against power loss.

When the scavenged energy is in excess of the application

needs, it cannot be accumulated beyond the capacity of CB .

The application is made aware of the excess energy, and

preomputes coupons with it to avoid energy wastage. Coupons



TABLE I
OVERHEAD OF THE ONLINE PORTION OF REGULAR AND

PRECOMPUTED CRYPTOGRAPHIC PRIMITIVES1

Crypto

primitive

Coupon

Size

Regular Precomputed

Energy

(uJ)

Time

(ms)

Energy

(uJ)

Time

(ms)

AES-CTR 128 bytes 17.8 12.4 8.7 6.30

TRNG 256 bits 79.8 68.2 0.7 ∼
2

DH Key
exchange

256 bits 49880.0 43868.2 24900 21900

1 Measurements are from MSP430FR5994 operating at 1MHz.
2 Time taken to read a 256-bit value from FRAM (0.7µs)is negligible.

are the intermediate results of data independent portions of

an algorithm. Cryptographic algorithms are ideal for pre-

computation as they pre-process static data, such as Diffie

Hellman(DH) key exchange, illustrated in Figure 2. Alice and

Bob agree upon a common elliptic curve with a base point,

G, to establish a secret key, K, over an insecure channel

in three steps. First, they each compute a random number;

second, they multiply it with G; and third, they exchange the

product and multiply the incoming product with their private

random number to arrive at the shared secret, N1.N2.G, from

which the secret key, K, is derived. The first two steps are

independent of the input data; Bob precomputes the first two

steps when excess energy is available offline, and stores N2

and N2.G as coupons. At run-time, Bob extracts the coupons

from memory, communicates the product and computes the

shared secret with the input. Bob only requires 2409mJ of

energy to compute the shared secret, whereas, Alice requires

49088mJ because she did not precompute the first two steps

during the offline phase. Precomputation is also applicable to

other cryptographic algorithms, such as digital signatures [2]

and bulk encryption [3]. Since it generates cyptographic states

as coupons, which are stored in non-volatile memory, the

coupons must be protected along with the critical system data

in secure checkpoints.

III. HARDWARE SUPPORT

A secure intermittent architecture requires hardware support

to generate and restore secure checkpoints, and to adapt its

computation based on the energy level in CB , which are

illustrated in Figure 1.

a) Secure Checkpoints: Secure non-volatile storage can

be used to store checkpoints, which prevents unauthorized

reads and writes to the stored data, both during power on and

power off. The size of secure storage is fixed to an architec-

ture, for example the Zatara ZA9L1 provides 4kB of secure

storage [4]. Since the checkpoint size depends on both the

architecture and application, it maybe larger than the available

secure storage. With the secure storage as root of trust, a

dedicated protocol is designed to protect the checkpoints in

insecure non-volatile memory, which lacks any protection [5].

The protocol introduces a nonce to every checkpoint for fresh-

ness, which is placed in secure storage. The checkpoint is then

encrypted, authenticated, and stored in insecure non-volatile

memory. An unsecured checkpoint only requires 0.003µJ/bit to

Fig. 3. Different levels of the energy interface and its corresponding functions
in the architecture.

write to non-volatile memory but it leaves the power transition

vulnerable. Whereas, a secure checkpoint provides all the

security guarantees and costs 22.2µJ/bit, which includes the

energy required for cryptographic operations and write to non-

volatile memory. Accelerated cryptographic hardware modules

reduce the latency and energy required to secure checkpoints.

b) Energy Interface: The intermittent system turns on

when the input power supply reaches a preset VCC . After

power-on, the forward progress of the application adjusts itself

based on the input from the energy interface. The interface, in

Figure 1, indicates the level of energy in CB using two bits,

B0 and B1. It provides four levels of energy - 00, 01, 10, and

11, depicted in Figure 3, where each level corresponds to an

adapted computing pattern.

We use this interface with an intermittent architecture to es-

tablish a secure communication link. First, a key is exchanged

over an insecure channel using DH key exchange in Figure 2.

Next, using this key, all future messages through this channel

are encrypted using a bulk encryption algorithm, such as AES

in counter mode. The random number, point multiplication,

and key stream for bulk encryption are precomputed when the

device is idle and the energy level is ‘11’. Secure checkpoint

calls are triggered when the energy level is ‘01’. Table I lists

the overhead of the online phase of regular and precomputed

versions of the cryptographic primitives used in establishing

the link.
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